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Abstract
The dynamics of confined glass-forming liquids is discussed on the basis of the
recent extension of the mode-coupling theory for the liquid–glass transition to
the model of the quenched–annealed binary mixture. It is in particular shown
that, in confinement, the collective density correlation functions always decay
to a non-zero infinite time value, even in the fluid state, and some clarification
is given about the question of the relation between structure and dynamics in
confined fluids.

In the past few years, there has been a strong interest in the dynamics of liquids under
confinement and more specifically in their structural glass transition, which has been
investigated by a variety of experimental techniques and by computer simulation [1, 2]. One of
the main goals of these studies was to improve our understanding of the concept of cooperativity,
a key ingredient of many glass transition theories [3]. Indeed, there is now much evidence
that, in the bulk, the dynamics of deeply supercooled liquids is strongly inhomogeneous and
that correlated clusters of molecules, the so-called dynamical heterogeneities, play a crucial
role in the slowing-down of the dynamics when the temperature is decreased. But, up to now,
many aspects of the characterization of these dynamical heterogeneities have remained elusive.
For instance, there is no clear consensus on their shape, their size and their evolutions with
temperature.

This is where the interest in confined glass-forming systems came in. Indeed, confinement
is a means to introduce geometrical constraints and new characteristic length scales (pore size,
film thickness . . .) in the system under study. Thus, by looking at the way the dynamics is
modified under confinement compared to the bulk, one can hope to gain some insight into
the properties of the dynamical heterogeneities. For instance, in the simplest scenarios, one
expects from finite size effects a cut-off on the slowing-down of the dynamics as temperature
is varied, when the typical size of the heterogeneities in the bulk would become larger than
the characteristic length scale of the confining medium. Confinement would thus provide an
indirect probe of the properties of the dynamical heterogeneities.
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It turns out that the situation is more complex. Indeed, the previous line of reasoning
requires that the physical phenomena which are specific of confined systems have a negligible
impact on the dynamics of the imbibed fluid or at least that their influence is sufficiently
well known that it can be subtracted from the results. This is usually not the case and strong
confinement effects are observed, in particular at the fluid–solid interface where structured
layers of almost immobile molecules are often formed. So this is in fact the problem of
dynamics under confinement as a whole which has to be addressed, and not only at the level
of a simple modification of the bulk dynamics.

Theories dealing with the dynamics in confinement are far less developed than for the
bulk and they are usually of a phenomenological nature [2]. There is still a strong need for
elaborate microscopic theories in this field. Indeed, the variety of systems to consider is
immense. Porous media can differ in the shape, size, size distribution, connectivity etc, of
their pores. They can be made of various materials, leading to a wide range of fluid–solid
interactions, which adds to the already great variability of intermolecular interactions met with
usual glass-formers. A reasonable theoretical approach, able to catch many of these subtleties,
would thus be of great help. Applied to various models, it would allow us to explore thoroughly
the phenomenology of confined glass-forming systems and maybe to disentangle the different
physical effects which interplay in these systems.

Recently, a step in this direction has been made with the extension of the mode-coupling
theory (MCT) for the liquid–glass transition [4–7] to a particular class of confined systems, the
so-called ‘quenched–annealed’ (QA) binary mixtures [8]. In these systems, first introduced
by Madden and Glandt [9], the fluid molecules equilibrate in a matrix of particles frozen in a
disordered configuration sampled from a given probability distribution. This class of models,
which describe situations of statistically homogeneous and isotropic confinement, has been
found to be able to qualitatively reproduce many aspects of the physics of fluids confined in
materials like Vycor, controlled porous glasses or aerogels, even when very simple and poorly
realistic models of the confining medium are considered [10], and, in fact, the fluid dynamics
and glass transition in some of its instances have already been the subject of recent studies by
molecular dynamics simulations [11–13].

In this paper, we will give a short presentation of the proposed extension of the MCT
to QA systems (a more detailed account is given in [8]) and, on the basis of this approach,
we will discuss a few aspects of the physics of confined fluids which are of relevance for the
interpretation of experimental and computer simulation results.

Before dealing with dynamics, one first has to consider some peculiarities of the statics
of QA systems. QA mixtures are systems with quenched disorder, so that their theoretical
description requires two types of averages, a thermal average denoted by 〈· · ·〉, taken for a
given realization of the matrix, and a disorder average over the matrix realizations, denoted
by · · ·, to be taken after the thermal average. As in the bulk, one is interested in the Fourier
components of the microscopic fluid density, or, in short, density fluctuations, defined as
ρf

q(t) = ∑Nf
j=1 eiqr j (t), where q denotes the wavevector, Nf is the fluid particle number and

r j (t) is the position of fluid particle j at time t . A significant difference from the bulk is that, for
a given matrix realization, the translational invariance of the system is broken by the presence of
the quenched component. This results in non-zero average density fluctuations at equilibrium,
i.e., 〈ρf

q〉 �= 0. It is only after the disorder average that the symmetry is restored, leading to

〈ρf
q〉 = 0, hence the description of the model as statistically homogeneous and isotropic. This

property has a well known impact on the equations describing the structural correlations in such
systems, for instance the so-called replica Ornstein–Zernike (OZ) equations [14, 15], where it
leads to the splitting of the total and direct correlation functions of the fluid, hff (r) and cff(r),
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respectively, into two contributions, connected (hc(r) and cc(r)) and blocked or disconnected
(hb(r) and cb(r)). The separation of hff(r) into two terms leads to a similar property of the fluid

structure factor Sff
q = 〈ρf

qρ
f−q〉/Nf = 1 + nf ĥff

q , where nf is the fluid number density, which

can be expressed as Sff
q = Sc

q + Sb
q with Sc

q = 〈(ρf
q − 〈ρf

q〉)(ρf−q − 〈ρf−q〉)〉/Nf = 1 + nf ĥc
q

and Sb
q = 〈ρf

q〉〈ρf−q〉/Nf = nf ĥb
q , where f̂q denotes the Fourier transform of f (r). To fix all

the notations, we define here the matrix–matrix and fluid–matrix structure factors and total
correlation functions as well, which are given by Smm

q = 〈ρm
q ρm−q〉/Nm = 1 + nmĥmm

q and

Sfm
q = 〈ρf

qρ
m−q〉/

√
Nf Nm = √

nfnmĥfm
q , where Nm is the matrix particle number, nm is the

matrix number density and ρm
q = ∑Nm

j=1 eiqs j , where s j is the fixed position of matrix particle
j , is the q Fourier component of the quenched microscopic matrix density.

The identification of two types of static fluid correlations has significant implications for
the dynamics. Indeed, if one forgets for a moment the possibility of a dynamical ergodicity

breaking, one expects, using standard arguments, that limt→∞ 〈ρf
q(t)ρ

f−q〉 = 〈ρf
q〉〈ρf−q〉, i.e.,

the normalized total density fluctuation autocorrelation function φT
q (t) = 〈ρf

q(t)ρ
f−q〉/(Nf Sff

q )

does not decay to zero at long times, but rather

lim
t→∞ φT

q (t) = Sb
q

Sff
q

.

This general result only derives from the fact that the fluid is plunged in an inhomogeneous
external potential, which here is due to the matrix. The existence of a non-zero limit thus
is independent of the model and in particular this fact does not depend on the fluid–matrix
interaction. To use the language of scattering experiments, it means that one should always
expect to measure non-vanishing coherent intermediate scattering functions or that an elastic
contribution has to be present in the coherent dynamical structure factors [16, 17]. We stress
here that this is a true static phenomenon, and not one related to some very slow dynamical
process.

We can now turn to the dynamical theory. Following the preceding discussion, the
proper dynamical variable to consider is the relaxing part of the fluid density fluctuations
δρf

q(t) = ρf
q(t) − 〈ρf

q〉, rather than the full ρf
q(t). Then, using standard projection operator

methods [5], the equations of the MCT for QA systems are obtained [8]. They are equations for
the time evolution of the normalized connected density fluctuation autocorrelation function,

φq(t) = 〈δρf
q(t)δρ

f−q〉/(Nf Sc
q), and they consist of a generalized Langevin equation, which is

the same as for the bulk,

φ̈q + �2
qφq + �2

q

∫ t

0
dτ Mq(t − τ )φ̇q(τ ) = 0,

with �2
q = q2kBT/(mSc

q), where m is the mass of the fluid particles, T the temperature
and kB the Boltzmann constant, and of an expression for the memory kernel Mq(t) =
�qδ(t) + M (MC)

q (t), with

M (MC)
q (t) =

∫
d3k

(2π)3

[
V (2)

q,kφk(t)φ|q−k|(t) + V (1)
q,kφk(t)

]
,

V (2)
q,k = 1

2
nf Sc

q

[
q · k
q2

ĉc
k +

q · (q − k)

q2
ĉc
|q−k|

]2

Sc
k Sc

|q−k|,

V (1)

q,k = nm Sc
q

[
q · (q − k)

q2
+ nf

q · k
q2

ĉc
k

]2 (ĥfm
|q−k|)

2

Smm
|q−k|

Sc
k .
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There are strong analogies between these equations and those for the bulk. Indeed, they share
the same mathematical structure, so that most of their properties are already known from the
extensive study of [5]. At a more detailed level, the expressions of the vertices V (2)

q,k and

V (1)
q,k , which determine the long time behaviour of φq(t) and involve static quantities only, are

very similar to those found in the bulk, for collective and tagged particle density fluctuations,
respectively [4].

About these vertices, a specific point is worth stressing. Indeed, one can see that the
structural quantities on which they depend are not those related to the full density fluctuations,
but the connected ones which specifically characterize the static correlations of the relaxing
part of the density fluctuations. This result, whose generality, we believe, goes beyond the
model of QA mixtures, solves an apparent paradox mentioned in various places and sometimes
considered as a challenge to a mode-coupling description of the glass transition in confinement,
that systems with identical structural properties can have significantly different dynamical
behaviours [12, 18]: In fact, only a non-trivial fraction of the total density fluctuations, a
fraction which exists on top of the static average density fluctuations induced by the external
potential in which the fluid particles evolve, is ‘active’ in the determination of the dynamical
properties of the confined fluid, and it is the evolution of this contribution which has to be
considered to discuss the relation between the fluid structure and dynamics and not the total
structure functions of the system.

The solution of the MCT equations for QA mixtures offers no special difficulties compared
to the bulk, since we essentially deal with the same type of equations. In [8], we have obtained
by the methods of [19] the dynamical phase diagram of a simple system consisting of a fluid
of hard spheres confined in a matrix of hard spheres frozen in an equilibrium configuration,
with both types of particles having diameter σ [13]. We present here typical examples of
the time evolution of the predicted density correlation functions. As in previous work, the
system is characterized by two volume fractions φf = πnfσ

3/6 and φm = πnmσ 3/6, and the
necessary structural quantities are computed using the Percus–Yevick approximation [14, 20].
For simplicity, we neglect φ̈q(t) in the generalized Langevin equation, so that the transient
dynamics of φq(t) now has a time constant τq = tmic Sc

q/(qσ)2 [19].
Two types of ergodicity breaking transitions were found in [8]. For small matrix densities,

a type B or discontinuous ideal glass transition line is met. It corresponds to the well
known scenario found in the bulk, showing a two-step relaxation in the ergodic phase and
a discontinuous change of the asymptotic value of φq(t) from zero to a finite value when the
transition line is reached, corresponding to the divergence of the characteristic time of the
second relaxation step. This is illustrated in figure 1(a). For larger matrix densities, a type
A or continuous ideal glass transition line is found. Here, one observes a one-step relaxation
and the ergodicity breaking transition is continuous, i.e., the non-zero asymptotic value of
φq(t) grows continuously from zero when the system enters the non-ergodic domain. Such a
behaviour is shown in figure 1(b).

From the knowledge of φq(t), one can compute the total density correlation function φT
q(t),

which is the quantity directly measurable in experiments and simulations. Both functions are
indeed related by the simple formula

φT
q (t) = Sc

q

Sff
q

φq(t) +
Sb

q

Sff
q

.

In figure 2 are reported the results of this transformation on the data of figure 1. From these
curves, difficulties can immediately be anticipated if one is to compare the predictions of the
mode-coupling theory with experimental or simulation data for φT

q (t). Indeed, one sees that
the blocked part of the static density correlations provides a density dependent background
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Figure 1. Connected density correlation function φq (t) for hard-sphere fluids confined in matrices
of identical hard spheres frozen in an equilibrium configuration. qσ � 6.71 is close to the position
of the main maximum of the fluid structure factor. We use tmic = 160. (a) φm = 0.105; from
bottom to top: φf = 0.99φc

f , 0.999φc
f , 0.9999φc

f , 0.999 99φc
f , 1.000 01φc

f , 1.0001φc
f , 1.001φc

f and
1.01φc

f , where φc
f � 0.352 is the critical fluid compacity. The dotted line shows the asymptote of

φq (t) at φc
f . (b) φm = 0.209; from bottom to top: φf = 0.9φc

f , 0.99φc
f , 0.999φc

f , 1.001φc
f , 1.01φc

f ,
1.1φc

f , where φc
f � 0.146 is the critical fluid compacity.

Figure 2. Total density correlation function φT
q (t) for the same systems as in figure 1. (a)

φm = 0.105; φf values as in figure 1(a). The lowest dotted line shows the ratio Sb
q/Sff

q at φc
f ,

while the highest shows the corresponding asymptote of φT
q (t). (b) φm = 0.209; φf values as in

figure 1(b). The dotted line shows the ratio Sb
q/Sff

q at φc
f .

on top of which the glassy dynamics develops itself. It might thus be difficult to separate, in
the long time behaviour of φT

q (t), the evolutions which are of purely static origin from those
which characterize the glassy dynamics of the system. This is especially critical in the case of
type A transitions, since when the system enters the ideal glassy state both contributions are,
to first order, linear in φf − φc

f [5].
In conclusion, we have demonstrated how the model of the QA mixture can be a very

useful tool for the study of the physics of confined glass-forming liquids. Indeed, we have
shown that this model, thanks to some crucial simplifying features, in particular the property
of statistical homogeneity, allows for a rigorous illustration of some essential concepts which
have to be taken into account when dealing with confined systems, like the distinction between
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static and relaxing density fluctuations. Now, with the corresponding extension of the MCT
which is available, it seems that much progress could be made in our understanding of the
dynamics of confined fluid systems.
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[4] Bengtzelius U, Götze W and Sjölander A 1984 J. Phys. C: Solid State Phys. 17 5915
[5] Götze W 1991 Liquids, Freezing and Glass Transition ed J-P Hansen, D Levesque and J Zinn-Justin (Amsterdam:

North-Holland) p 287
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